Well-posedness for the two dimensional generalized Zakharov–Kuznetsov equation in anisotropic weighted Sobolev spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Well Posedness of the Modified Korteweg-de Vries Equation in Weighted Sobolev Spaces

We study local and global well posedness of the k-generalized Korteweg-de Vries equation in weighted Sobolev spaces Hs(R) ∩ L2(|x|2rdx).

متن کامل

The Kawahara equation in weighted Sobolev spaces

Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...

متن کامل

Well-posedness of the Fifth Order Kadomtsev-Petviashvili I Equation in Anisotropic Sobolev Spaces with Nonnegative Indices

In this paper we establish the local and global well-posedness of the real valued fifth order Kadomstev-Petviashvili I equation in the anisotropic Sobolev spaces with nonnegative indices. In particular, our local well-posedness improves SautTzvetkov’s one and our global well-posedness gives an affirmative answer to SautTzvetkov’s L-data conjecture.

متن کامل

Well-posedness for a Higher Order Nonlinear Schrödinger Equation in Sobolev Spaces of Negative Indices

We prove that, the initial value problem associated to ∂tu+ iα∂ 2 x u+ β∂ x u+ iγ|u|u = 0, x, t ∈ R, is locally well-posed in Hs for s > −1/4.

متن کامل

Local Well-posedness for Dispersion Generalized Benjamin-ono Equations in Sobolev Spaces

We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation ∂tu+ |∂x| ∂xu+ uux = 0, u(x, 0) = u0(x), is locally well-posed in the Sobolev spaces H for s > 1 − α if 0 ≤ α ≤ 1. The new ingredient is that we develop the methods of Ionescu, Kenig and Tataru [13] to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet, Saut and T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.05.028